

WHITE FUSED ALUMINA

Chemical Analysis (Standard)			
%	typical	guaranteed	
Al_2O_3	99,53	Min 99	
SiO ₂	0,05	Max 0,10	
Fe ₂ O ₃	0,03	Max 0,10	
Na ₂ O	0,24	Max 0,45	

Physical Properties			
	typical		
Bulk density	3,60	g/cm ³	
Specific density	3.90	g/cm ³	
Melting point	2040	° C	

Mineralogical Composition			
Main Phase	lpha - alumina		
Secondary phases			

Other Information

White Fused Alumina (WFA) is obtained from the fusion of high purity calcined alumina in electric arc furnaces. WFA is raw material characterized with high hardness, yet friable with high purity, chemical stability, a high melting point, and large crystal size.

It is recommended for refractory applications where purity, chemical stability or high refractoriness is an issue to be considered.